Subscribe to RSS
DOI: 10.1055/s-2008-1027884
© Georg Thieme Verlag KG Stuttgart · New York
Einfluss von Bisphosphonaten auf die entzündliche Gelenkdestruktion bei rheumatoider Arthritis und in Arthritismodellen
Influence of Bisphosphonates on Inflammatory Joint Destruction in Rheumatoid Arthritis and in Arthritis ModelsPublication History
Publication Date:
27 October 2008 (online)

Zusammenfassung
Mit zunehmenden Erkenntnissen über die Bedeutung der osteoklastären Knochenresorption, vermittelt über das RANKL-RANK-OPG-System bei postmenopausaler, glukokortikoidinduzierter und entzündungsassoziierter Osteoporose und im Prozess der Destruktion des periartikulären Knochens bei rheumatoider Arthritis (RA) wächst das Interesse an einer Kombination von antiinflammatorischen und antiosteoklastären Therapieprinzipien zur Hemmung der Gelenkdestruktion bei Patienten mit RA. Aufgrund suppressiver Effekte auf die osteoklastäre Knochenresorption sowie zusätzlicher antiinflammatorischer Effekte, wie Hemmung der Sekretion von proinflammatorischen Zytokinen und Matrix-Metalloproteinasen, bieten sich die relativ nebenwirkungsarmen Bisphosphonate als antiosteoklastäres und potenziell antiinflammatorisches adjuvantes Therapieprinzip bei RA an. Bisphosphonate wurden in verschiedenen Arthritismodellen als auch in kleineren Studien bei Patienten mit RA hinsichtlich ihrer Wirksamkeit auf Entzündung, Gelenkdestruktion und periartikuläre Knochenresorption untersucht. Während im Tiermodell übereinstimmend für verschiedene Bisphosphonate eine Hemmung des periartikulären Knochenmasseverlusts bzw. der Knochenresorption nachgewiesen werden konnte, sind die Befunde hinsichtlich der Suppression von Gelenkdestruktion und Entzündung nicht einheitlich. Für neu entwickelte hochpotente Bisphosphonate wie Zoledronat konnte nicht nur im Tiermodell, sondern auch bei RA-Patienten ein hemmender Effekt auf die Knochenerosion gezeigt werden. Die Beurteilung der in Tiermodellen gewonnenen Ergebnisse wird dadurch erschwert, dass verschiedene Substanzen in Arthritis-Modellen mit unterschiedlicher Pathogenese in differenten Dosierungen zum Einsatz kamen. Außerdem wurden Bisphosphonat-Effekte auf Knochen, Entzündung und Gelenkdestruktion mit unterschiedlichen Methoden und Methodenkombinationen untersucht. Sowohl tierexperimentelle Daten als auch Untersuchungen bei RA-Patienten weisen darauf hin, dass für die Hemmung von Gelenkdestruktion und Entzündung wesentlich höhere Dosierungen erforderlich sind als für die Hemmung der osteoklastären Knochenresorption. Unklar ist, inwieweit die zur Hemmung der Entzündung erforderlichen Dosierungen eine Übersuppression des Knochenumbaus bedingen. Die vorliegende Übersicht gibt einen Überblick über die in Tiermodellen und bei RA gewonnen Erkenntnisse über Bisphosphonat-Effekte auf Entzündung und die arthritisassoziierte Knochendestruktion.
Abstract
In context with the increasing evidence for the significance of osteoclastic bone resorption mediated by the RANKL-RANK-OPG system in the pathogenesis of postmenopausal, glucocorticoid-induced and inflammation-associated osteoporosis as well as in joint destruction in rheumatoid arthritis (RA), there is an increasing interest in the combination of anti-inflammatory and anti-osteoclastic therapies in RA. Because of their suppressive effects on both osteoclastic bone resorption and inflammation due to inhibitory effects on the secretion of pro-inflammatory cytokines and matrix metalloproteinases, bisphosphonates are implicated to be a useful adjuvant therapy in RA. Furthermore, these substances are relatively cheap and have only few side effects. The effects of various bisphosphonates on inflammation, joint destruction and periarticular bone resorption were investigated in different animal models of RA and also in some small studies in RA patients. In various animal models, a suppressive effect of different non-amino- and aminobisphosphonates on periarticular bone resorption was found. But the results with respect to the inhibition of joint and cartilage destruction and inflammation are inconsistent. Newly developed, highly potent aminobisphosphonates such as zoledronate have been shown to inhibit articular bone erosion not only in animal models but also in RA. The assessment of data from animal models is difficult because various bisphosphonates were administered in different doses in heterogeneous animal models with a partly different pathogenesis. Furthermore, the effects of bisphophonates on bone and joint destruction were investigated using different methods or combinations of these methods. Data from animal models and from RA patients have shown that the doses of bisphosphonates necessary for the suppression of inflammation and joint destruction are significantly higher than those needed for the inhibition of osteoclastic bone resorption. It is not clear whether or not these relatively high bisphosphonate doses may result in an oversuppression of bone turnover. The effects of various bisphosphonates on joint destruction and inflammation in RA and animal models of RA are reviewed systematically and discussed in this contribution.
Schlüsselwörter
rheumatoide Arthritis - Arthritismodelle - Gelenkdestruktion - Bisphosphonate
Key words
rheumatoid arthritis - animal models of rheumatoid arthritis - joint destruction - bisphosphonates
Literatur
- 1
Abe Y, Kawakami A, Nakashima T. et al .
Etidronate inhibits human osteoblast apoptosis by inhibition of pro-apoptotic factor(s)
produced by activated T cells.
J Lab Clin Med.
2000;
136
344-354
MissingFormLabel
- 2
Akiyama T, Mori S, Mashiba T. et al .
Incadronate disodium inhibits joint destruction and periarticular bone loss only in
the early phase of rat adjuvant-induced arthritis.
J Bone Miner Metab.
2005;
23
295-301
MissingFormLabel
- 3
Barrera P, Blom A, Lent P LEM. et al .
Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis.
Arthritis Rheum.
2000;
43
1951-1959
MissingFormLabel
- 4
Bell N H, Johnson R H.
Bisphosphonates in the treatment of osteoporosis.
Endocrine.
1997;
6
203-206
MissingFormLabel
- 5
Bellingham C M, Lee J M, Moran E L. et al .
Bisphosphonate (pamidronate/APD) prevents arthritis-induced loss of fracture toughness
in the rabbit femoral diaphysis.
J Orthop Res.
1995;
13
876-880
MissingFormLabel
- 6
Bogoch E R, Lee T C, Fornasier V L. et al .
Articular damage is associated with intraosseous inflammation in the subchondral bone
marrow of joints affected by experimental inflammatory arthritis and is modified by
zoledronate treatment.
J Rheumatol.
2007;
34
1229-1240
MissingFormLabel
- 7
Breuil van V, Euller-Ziegler L.
Bisphosphonate therapy in rheumatoid arthritis.
Joint Bone Spine.
2006;
73
349-354
MissingFormLabel
- 8
Carvalho A P, Bezerra M M, Girão V C. et al .
Anti-inflammatory and anti-nociceptive activity of risedronate in experimental pain
models in rats and mice.
Clin Exp Pharmacol Physiol.
2006;
33
601-606
MissingFormLabel
- 9
Cantatore F P, Ingrosso A M, Carozzo M.
Effects of bisphosphonates on interleukin-1, tumor necrosis factor &alpha and ß2 microglobulin
in rheumatoid arthritis.
J Rheumatol.
1993;
23
1117-1118
MissingFormLabel
- 10
Cantatore F P, Acquista C A, Pipitone V.
Evaluation of bone turnover and osteoclastic cytokines in early rheumatoid arthritis
treated with alendronate.
J Rheumatol.
1999;
26
2318-2323
MissingFormLabel
- 11
Cohen S B, Dore R K, Lane N E. et al .
Denosumab treatment effects on structural damage, bone mineral density, and bone turnover
in rheumatoid arthritis: A twelve-month, multicenter, randomized, double-blind, placebo-controlled,
phase II clinical trial.
Arthritis Rheum.
2008;
58
1299-1309
MissingFormLabel
- 12
Corrado A, Santoro N, Cantatore F P.
Extra-skeletal effects of bisphosphonates.
Joint Bone Spine.
2007;
74
32-38
MissingFormLabel
- 13
Diarra D, Stolina M, Polzer K. et al .
Dickkopf-1 is a master regulator of joint remodeling.
Nature Medicine.
2007;
13
156-163
MissingFormLabel
- 14
Dombrecht E J, De Tollenaere C B, Aerts K. et al .
Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation.
Biochem Biophys Res Commun.
2006;
348
459-464
MissingFormLabel
- 15
Eggelmeijer F, Papapoulos S E, Paassen H C. et al .
Clinical and biochemical response to single infusion of pamidronate in patients with
active rheumatoid arthritis: a double blind placebo controlled study.
J Rheumatol.
1994;
21
2016-20
MissingFormLabel
- 16
Elomaa van I, Risteli L, Laakso M. et al .
Monitoring the action of clodronate with type I collagen metabolites in multiple myeloma.
Eur J Cancer.
1996;
32
1166-1170
MissingFormLabel
- 17
Evans C E.
Bisphosphonates modulate the effect of macrophage-like cells on osteoblast.
Int J Biochem Cell Biol.
2002;
34
554-563
MissingFormLabel
- 18 Ferraccioli G F, Salaffi F, Carotti M. et al .Cl2 MDP improves rheumatoid inflammation. 5th INWIN, Interscience World Conference of Inflammation, Antirheumatics, Analgetics,
Immunomodulators, Geneva Switzerland; 25 – 28 april 1993 abstract 208
MissingFormLabel
- 19
Goldring S R, Gravallese E M.
Bisphosphonates: Environmental protection for the joint.
Arthritis Rheum.
2004;
50
2044-2047
MissingFormLabel
- 20
Gough A K, Lilley J, Eyre S. et al .
Generalised bone loss in patients with early rheumatoid arthritis.
Lancet.
1994;
344
23-27
MissingFormLabel
- 21
Gravallese E M, Manning C, Tsay A. et al .
Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation
factor.
Arthritis Rheum.
2000;
43
250-258
MissingFormLabel
- 22
Hamma-Koutbali Y, Di Benedetto M, Ledoux D. et al .
A novel non-containing-nitrogen bisphosphonate inhibits both in vitro and in vivo
angiogenesis.
Biochem Biophys Res Comm.
2003;
24
816-823
MissingFormLabel
- 23
Harada H, Nakayama T, Nanaka T. et al .
Effects of bisphosphonates on joint damage and bone loss in rat adjuvant-induced arthritis.
Inflamm Res.
2004;
53
45-52
MissingFormLabel
- 24
Hasegawa J, Nagashima M, Yamamoto M. et al .
Bone resorption and inflammatory inhibition efficacy of intermittent cyclical etidronate
therapy in rheumatoid arthritis.
J Rheumatol.
2003;
30
474-479
MissingFormLabel
- 25
Herrak P, Gortz B, Hayer S. et al .
Zoledronic acid protects against local and systemic bone loss in tumor necrosis factor-mediated
arthritis.
Arthritis Rheum.
2004;
50
2327-2337
MissingFormLabel
- 26
Hewitt R E, Lissina A, Green A E. et al .
The bisphosphonate acute phase response: rapid and copious production of proinflammatory
cytokines by peripheral blood gamma-delta T cells in response to aminobisphosphonates
is inhibited by statins.
Clin Exp Immunol.
2005;
139
101-111
MissingFormLabel
- 27
Itoh F, Aoyagi S, Kusama H. et al .
Effects of clodronate and alendronate on local and systemic changes in bone metabolism
in rats with adjuvant arthritis.
Inflammation.
2004;
28
15-21
MissingFormLabel
- 28
Jarrett S J, Conaghan P G, Sloan V S. et al .
Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic
acid in early rheumatoid arthritis.
Arthritis Rheum.
2006;
54
1410-1414
MissingFormLabel
- 29
Kinne R W, Schmidt-Weber C B, Hoppe R. et al .
Long-term amelioration of rat adjuvant arthritis following systemic elimination of
macrophages by clodronate-containing liposomes.
Arthritis Rheum.
1995;
38
1777-1790
MissingFormLabel
- 30
Kinne R W, Schmidt C B, Buchner E. et al .
Treatment of rat arthritides with clodronate-containing liposomes.
Scand J Rheumatol.
1995;
101 (Suppl)
91-97
MissingFormLabel
- 31
Kong Y Y, Feige U, Sarosi I. et al .
Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through
osteoprotegerin ligand.
Nature.
1999;
402
304-309
MissingFormLabel
- 32
Lodder M C, Pelt P A, Lems W F. et al .
Effects of high dose IV pamidronate on disease activity and bone metabolism in patients
with active RA: a randomized, double-blind placebo-controlled trial.
J Rheumatol.
2003;
30
2080-2081
MissingFormLabel
- 33
Maccagno van A, Di Giorgio E, Roldan E JA. et al .
Double blind radiological assessment of continuous oral pamidronic acid in patients
with rheumatoid arthritis.
J Rheumatol.
1994;
23
211-214
MissingFormLabel
- 34
Masuda-Aiba S, Shinozaki T, Takagishi K.
Effects of YM 529, a novel minodronic acid, on adjuvant arthritis in rats.
Clin Exp Rheumatol.
2004;
22
71-78
MissingFormLabel
- 35
Matsuo A, Shuto T, Hirata G. et al .
Antiinflammatory and chondroprotective effects of the aminobisphosphonate incadronate
(YM175) in adjuvant induced arthritis.
J Rheumatol.
2003;
30
1280-1290
MissingFormLabel
- 36
Mazzantini M, Di Munno O, Metelli M R. et al .
Single infusion of neridronate (6-amino-1-hydroxyhexylidene-1,1-bisphosphonate) in
patients with active rheumatoid arthritis: effects on disease activity and bone resorption
markers.
Aging Clin Exp Res.
2002;
14
197-201
MissingFormLabel
- 37
Mönkkönen J, Taskinen M, Auriola S OK. et al .
Growth inhibition of macrophage-like and other cell types by liposome-encapsulated,
calcium-bound and free bisphosphonates in vitro.
J Drug Targeting.
1994;
2
299-308
MissingFormLabel
- 38
Mönkkönen J, Simila J, Rogers M J.
Effects of tiludronate and ibandronate on the secretion of proinflammatory cytokines
and nitric oxide from macrophages in vitro.
Life Sci.
1998;
62
PL95-PL102
MissingFormLabel
- 39
Moran E L, Fornasier T L, Bogoch T R.
Pamidronate prevents bone loss associated with carrageenan arthritis by reducing resorptive
activity but not recruitment of osteoclasts.
J Orthop Res.
2000;
18
873-881
MissingFormLabel
- 40
Morishita M, Nagashima M, Wauke K. et al .
Osteoclast inhibitory effects of vitamin K 2 alone or in combination with etidronate
or risedronate in patients with rheumatoid arthritis: 2-year results.
J Rheumatol.
2008;
35
407-413
MissingFormLabel
- 41
Neumann T, Oelzner P, Petrow P K. et al .
Osteoprotegerin reduces the loss of periarticular bone mass in primary and secondary
spongiosa but does not influence inflammation in rat antigen-induced arthritis.
Inflamm Res.
2006;
55
32-39
MissingFormLabel
- 42
Oelzner P, Brauer R, Henzgen S. et al .
Periarticular bone alterations in chronic antigen-induced arthritis: free and liposome-encapsulated
clodronate prevent loss of bone mass in the secondary spongiosa.
Clin Immunol.
1999;
90
79-88
MissingFormLabel
- 43
Oelzner P, Kunze A, Henzgen S. et al .
High-dose clodronate therapy prevents joint destruction in chronic antigen-induced
arthritis of the rat but inhibits bone formation at the axial skeleton.
Inflamm Res.
2000;
49
424-433
MissingFormLabel
- 44
Österman T, Kippo K, Lauren L. et al .
Effect of clodronate on established adjuvant arthritis.
Rheumatol Int.
1994;
14
139-147
MissingFormLabel
- 45
Österman T, Kippo K, Lauren L. et al .
A comparison of clodronate and indomethacin in the treatment of adjuvant arthritis.
Inflamm Res.
1997;
46
79-85
MissingFormLabel
- 46
Österman T, Virtamo T, Lauren L. et al .
Slow-release clodronate in prevention of inflammation and bone loss associated with
adjuvant arthritis.
J Pharmacol Exp Ther.
1997;
280
1001-1007
MissingFormLabel
- 47
Österman T, Kippo K, Lauren L. et al .
Effect of clodronate on established collagen-induced arthritis in rat.
Inflamm Res.
1995;
44
258-263
MissingFormLabel
- 48
Podworny N V, Kandel R A, Renlund R C. et al .
Partial chondroprotective effect of zoledronate in a rabbit model of inflammatory
arthritis.
J Rheumatol.
1999;
26
1972-1982
MissingFormLabel
- 49
Pysklywec M W, Moran E L, Bogoch E R.
Zoledronate (CGP 42’446), a bisphosphonate, protects against metaphyseal intracortical
defects in experimental inflammatory arthritis.
J Orthop Res.
1997;
15
858-861
MissingFormLabel
- 50
Ralston S H, Hacking L, Willocks L. et al .
Clinical, biochemical, and radiographic effects of aminohydroxypropylidene bisphosphonate
treatment in rheumatoid arthritis.
Ann Rheum Dis.
1989;
48
396-399
MissingFormLabel
- 51
Redlich K, Hayer S, Maier A. et al .
Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts
with osteoprotegerin.
Arthritis Rheum.
2002;
46
785-792
MissingFormLabel
- 52
Schett G, Redlich K, Hayer S. et al .
Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic
mice.
Arthritis Rheum.
2003;
48
2042-2051
MissingFormLabel
- 53
Schmidt-Weber C B, Rittig M, Buchner E. et al .
Apoptotic cell death in activated monocytes following incorporation of clodronate-liposomes.
J Leukoc Biol.
1996;
60
230-244
MissingFormLabel
- 54
Sims N A, Green J R, Glatt M. et al .
Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced
arthritis.
Arthritis Rheum.
2004;
50
2338-2346
MissingFormLabel
- 55
Tanishima S, Kishimoto Y, Fukata S. et al .
Minodronic acid influences receptor activator of nuclear factor kappaB ligand expression
and suppresses bone resorption by osteoclasts in rats with collagen-induced arthritis.
Mod Rheumatol.
2007;
7
198-205
MissingFormLabel
- 56
Takayanagi H, Iizuka H, Juji T. et al .
Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation
factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis.
Arthritis Rheum.
2000;
43
259-269
MissingFormLabel
- 57
Teronen O, Konttinen Y T, Lindqvist C. et al .
Inhibition of matrix metalloproteinase-1 by dichlormethylene bisphosphonate (clodronate).
Calcif Tissue Int.
1997;
61
59-61
MissingFormLabel
- 58
Teronen O, Konttinen Y T, Lindqvist C. et al .
Human neutrophil collagenase MMP-8 in peri-implant sulcus fluid and its inhibition
by clodronate.
J Dent Res.
1997;
76
1529-1537
MissingFormLabel
- 59
Valleala H, Laitinen K, Pylkkanen L. et al .
Clinical and biochemical response to single infusion of clodronate in active rheumatoid
arthritis – a double blind placebo controlled study.
Inflamm Res.
2001;
50
598-601
MissingFormLabel
- 60
Valleala H, Laasonen L, Koivula M K. et al .
Two year randomized controlled trial of etidronate in rheumatoid arthritis: changes
in serum aminoterminal telopeptides correlate with radiographic progression of disease.
J Rheumatol.
2003;
30
468-473
MissingFormLabel
- 61
Van Lent P L, Holthuysen A E, Putte L B. et al .
Role of macrophage-like synovial lining cells in localisation and expression of inflammation
in type II collagen-induced arthritis.
Scand J Rheumatol.
1995;
101 (Suppl)
83-89
MissingFormLabel
- 62
Van Offel J F, Schuerwegh A J, Bridts C H. et al .
Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine
profiles and bone density in rheumatoid arthritis treated with low dose prednisolone
and methotrexate.
Clin Exp Rheumatol.
2001;
19
13-20
MissingFormLabel
- 63
Van Offel J F, Schuerwegh A J, Bridts C H. et al .
Effect of bisphosphonates on viability, proliferation, and dexamethasone-induced apoptosis
of articular chondrocytes.
Ann Rheum Dis.
2002;
61
925-928
MissingFormLabel
- 64
Verdrengh van de M, Carlsten H, Ohlsson C. et al .
Addition of bisphosphonate to antibiotic and anti-inflammatory treatment reduces bone
resorption in experimental Staphylococcus aureus-induced arthritis.
J Orthop Res.
2006;
35
304-310
MissingFormLabel
- 65
Yamamoto K, Yoshino S, Shue G. et al .
Inhibitory effect of bone resorption and inflammation with etidronate therapy in patients
with rheumatoid arthritis for 3 years and in vitro assay in arthritis models.
Rheumatol Int.
2006;
26
627-632
MissingFormLabel
- 66
Yamane I, Hagino H, Okano T. et al .
Effect of minodronic acid (ONO-5920) on bone mineral density and arthritis in adult
rats with collagen-induced arthritis.
Arthritis Rheum.
2003;
48
1732-1741
MissingFormLabel
- 67
Zhang Q, Badell I R, Schwarz E M. et al .
Tumor necrosis factor prevents alendronate-induced osteoclast apoptosis in vivo by
stimulating Bcl-xL expression through Ets-2.
Arthritis Rheum.
2005;
52
2708-2718
MissingFormLabel
- 68
Zhao H, Shuto T, Hirata G. et al .
Aminobisphosphonate (YM175) inhibits bone destruction in rat adjuvant arthritis.
J Orthop Sci.
2000;
5
397-403
MissingFormLabel
- 69
Zhao H, Liu S, Huang D. et al .
The protective effects of incadronate on inflammation and joint destruction in established
rat adjuvant arthritis.
Rheumatol Int.
2006;
26
732-740
MissingFormLabel
- 70
Zysk S P, Durr H R, Gebhard H H. et al .
Effects of ibandronate on inflammation in mouse antigen-induced arthritis.
Inflamm Res.
2003;
52
221-226
MissingFormLabel
PD Peter Oelzner
Selbständiger Funktionsbereich Rheumatologie und Osteologie, Medizinische Klinik III,
Friedrich-Schiller-Universität Jena
Erlanger Allee 101
07740 Jena
Phone: ++ 49/36 41/9 32 43 26
Fax: ++ 49/36 41/9 32 68 42
Email: Peter.Oelzner@med.uni-jena.de